Skip to content

RingSeq

Info

Listed here below are methods in the form RingSeq(Seq).method(...) via the wrapper class RingSeq. The same exact methods exist in their original form method(Seq, ...) and are available in the ring_seq.methods module.

ring_seq.RingSeq.RingSeq

Wrapper class for circular methods.

Use this class to enable dot notation.

Attributes:

Name Type Description
underlying

The wrapped sequence.

Source code in src/ring_seq/RingSeq.py
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
class RingSeq:
    """Wrapper class for circular methods.

    Use this class to enable dot notation.

    Attributes:
        underlying: The wrapped sequence.
    """

    def __init__(self, underlying: Seq):
        """Initializes the instance with the sequence."""
        self.underlying = underlying

    def index_from(self, i: IndexO) -> Index:
        """Normalizes a given circular index of a sequence.

        Examples:
          >>> RingSeq('ABC').index_from(-1)
          2
          >>> RingSeq('ABC').index_from(3)
          0

        Args:
          i: circular index

        Returns:
          A standard index

        Raises:
          ArithmeticError: An error occurs if the sequence is empty.
        """
        return index_from(self.underlying, i)

    def apply_o(self, i: IndexO) -> Any:
        """Gets the element at some circular index.

        Examples:
          >>> RingSeq('ABC').apply_o(-1)
          'C'
          >>> RingSeq('ABC').apply_o(3)
          'A'
          >>> 'ABC'[-1]
          'C'
          >>> 'ABC'[3] # doctest: +SKIP
          IndexError: string index out of range

        Notes:
          As shown in the examples, behaves differently from standard method `[i]`.

        Args:
          i: circular index

        Returns:
          The element at circular index
        """
        return apply_o(self.underlying, i)

    def rotate_right(self, step: int) -> Seq:
        """Rotates the sequence to the right by some steps.

        Examples:
          >>> RingSeq('ABC').rotate_right(1)
          'CAB'

        Args:
          step: number of rotation steps to the right

        Returns:
          The rotated sequence
        """
        return rotate_right(self.underlying, step)

    def rotate_left(self, step: int) -> Seq:
        """Rotates the sequence to the left by some steps.

        Examples:
          >>> RingSeq('ABC').rotate_left(1)
          'BCA'

        Args:
          step: number of rotation steps to the left

        Returns:
          The rotated sequence
        """
        return rotate_left(self.underlying, step)

    def start_at(self, i: IndexO) -> Seq:
        """Rotates the sequence to start at some circular index.

        Examples:
          >>> RingSeq('ABC').start_at(1)
          'BCA'

        Notes:
          Is equivalent to `rotate_left`.

        Args:
          i: circular index where the sequence starts

        Returns:
          The rotated sequence
        """
        return start_at(self.underlying, i)

    def reflect_at(self, i: IndexO = 0) -> Seq:
        """Reflects the sequence to start at some circular index.

        Examples:
          >>> RingSeq('ABC').reflect_at()
          'ACB'
          >>> RingSeq('ABC').reflect_at(1)
          'BAC'

        Notes:
          `reflect_at(-1)` is equivalent to `reversed`.

        Args:
          i: circular index where the reflected sequence starts

        Returns:
          The reflected sequence
        """
        return reflect_at(self.underlying, i)

    def slice_o(self, start: IndexO, end: IndexO, step: int = 1) -> Seq:
        """Selects an interval of elements.

        Examples:
          >>> RingSeq('ABC').slice_o(-1, 5)
          'CABCAB'
          >>> 'ABC'[-1:5]
          'C'
          >>> RingSeq('ABC').slice_o(-1, 5, 2)
          'CBA'
          >>> 'ABC'[-1:5:2]
          'C'

        Notes:
          Given the definition of circular sequence, a slice can contain more elements than the sequence itself.
          As shown in the examples, behaves differently from standard methods `[i:j]` and `[i:j:k]`.

        Args:
          start: circular index where the slice starts
          end: circular index where the slice ends
          step: number of steps for filtering

        Returns:
          The sliced sequence, with only the first element every each step

        Raises:
          ValueError: An error occurs if slice step is zero.
        """
        return slice_o(self.underlying, start, end, step)

    def rotations(self) -> Iterator[Seq]:
        """Computes all the rotations of this circular sequence

        Examples:
          >>> list(RingSeq('ABC').rotations())
          ['ABC', 'BCA', 'CAB']
          >>> list(RingSeq('').rotations())
          []

        Returns:
          The sequence and its rotations, 1 step at a time to the left
        """
        return rotations(self.underlying)

    def index_o(self, x: Any, start: IndexO = 0, end: IndexO = maxsize) -> Index:
        """Gets the index of the first occurrence of a sub-sequence.

        Examples:
          >>> RingSeq('ABC').index_o('B', 2, 7)
          1
          >>> 'ABC'.index('B', 2, 7) # doctest: +SKIP
          ValueError: substring not found
          >>> RingSeq('ABC').index_o('BCAB', 2, 8)
          1

        Notes:
          Given the definition of circular sequence, the searched slice can contain more elements than the sequence itself.
          As shown in the examples, behaves differently from standard method `index(x[, i[, j]])`.

        Args:
          x: sub-sequence to be found, can be a `str` or a single element from a `list` or from a `tuple`
          start: circular index where the search starts
          end: circular index where the search ends

        Returns:
          A standard index

        Raises:
          Value error: An error occurs if the sub-sequence is invalid or not found.
        """
        return index_o(self.underlying, x, start, end)

    def reflections(self) -> Iterator[Seq]:
        """Computes all the reflections of this circular sequence

        Examples:
          >>> list(RingSeq('ABC').reflections())
          ['ABC', 'ACB']
          >>> list(RingSeq('').reflections())
          []

        Returns:
          The sequence and its reflection
        """
        return reflections(self.underlying)

    def reversions(self) -> Iterator[Seq]:
        """Computes all the reversions of this circular sequence

        Examples:
          >>> list(RingSeq('ABC').reversions())
          ['ABC', 'CBA']
          >>> list(RingSeq('').reversions())
          []

        Returns:
          The sequence and its reversion
        """
        return reversions(self.underlying)

    def rotations_and_reflections(self) -> Iterator[Seq]:
        """Computes all the rotations and reflections of this circular sequence

        Examples:
          >>> list(RingSeq('ABC').rotations_and_reflections())
          ['ABC', 'BCA', 'CAB', 'ACB', 'CBA', 'BAC']
          >>> list(RingSeq('').rotations_and_reflections())
          []

        Returns:
          The sequence and its rotations, and their reflections
        """
        return rotations_and_reflections(self.underlying)

    def is_rotation_of(self, that: Seq) -> bool:
        """Tests whether this circular sequence is a rotation of a given sequence.

        Examples:
          >>> RingSeq('ABC').is_rotation_of('BCA')
          True
          >>> RingSeq('ABC').is_rotation_of('ABC')
          True

        Args:
          that: sequence to be compared

        Returns:
          True if equal to any rotation of that
        """
        return is_rotation_of(self.underlying, that)

    def is_reflection_of(self, that: Seq) -> bool:
        """Tests whether this circular sequence is a reflection of a given sequence.

        Examples:
          >>> RingSeq('ABC').is_reflection_of('ACB')
          True
          >>> RingSeq('ABC').is_reflection_of('ABC')
          True

        Args:
          that: sequence to be compared

        Returns:
          True if equal to any reflection of that
        """
        return is_reflection_of(self.underlying, that)

    def is_reversion_of(self, that: Seq) -> bool:
        """Tests whether this circular sequence is a reversion of a given sequence.

        Examples:
          >>> RingSeq('ABC').is_reversion_of('CBA')
          True
          >>> RingSeq('ABC').is_reversion_of('ABC')
          True

        Args:
          that: sequence to be compared

        Returns:
          True if equal to any reversion of that
        """
        return is_reversion_of(self.underlying, that)

    def is_rotation_or_reflection_of(self, that: Seq) -> bool:
        """Tests whether this circular sequence is a rotation and/or reflection of a given sequence.

        Examples:
          >>> RingSeq('ABC').is_rotation_or_reflection_of('BAC')
          True
          >>> RingSeq('ABC').is_rotation_or_reflection_of('ABC')
          True

        Args:
          that: sequence to be compared

        Returns:
          True if equal to any combination of rotation and reflection of that
        """
        return is_rotation_or_reflection_of(self.underlying, that)

    def rotational_symmetry(self) -> int:
        """Computes the order of rotational symmetry possessed by this circular sequence.

        Examples:
          >>> RingSeq('-|--|--|--|-').rotational_symmetry()
          4
          >>> RingSeq('-|+-|+-|+-|+').rotational_symmetry()
          4

        Returns:
          The rotational symmetry order, that is the number >= 1 of rotations
          in which a circular sequence looks exactly the same
        """
        return rotational_symmetry(self.underlying)

    def symmetry_indices(self) -> list[Index]:
        """Finds the indices of each element of this circular sequence close to an axis of reflectional symmetry.

        Examples:
          >>> RingSeq('-|--|--|--|-').symmetry_indices()
          [1, 4, 7, 10]
          >>> RingSeq('-|+-|+-|+-|+').symmetry_indices()
          []

        Returns:
          The indices of each element close to an axis of reflectional symmetry,
          that is a line of symmetry that splits the sequence in two identical halves
        """
        return symmetry_indices(self.underlying)

    def symmetry(self) -> int:
        """Computes the order of reflectional (mirror) symmetry possessed by this circular sequence.

        Examples:
          >>> RingSeq('-|--|--|--|-').symmetry()
          4
          >>> RingSeq('-|+-|+-|+-|+').symmetry()
          0

        Notes:
          Reflectional symmetry is always lower or equal than rotational symmetry.

        Returns:
          The reflectional (mirror) symmetry order, that is the number >= 0 of reflections
          in which a circular sequence looks exactly the same
        """
        return symmetry(self.underlying)

__init__(underlying)

Initializes the instance with the sequence.

Source code in src/ring_seq/RingSeq.py
27
28
29
def __init__(self, underlying: Seq):
    """Initializes the instance with the sequence."""
    self.underlying = underlying

apply_o(i)

Gets the element at some circular index.

Examples:

>>> RingSeq('ABC').apply_o(-1)
'C'
>>> RingSeq('ABC').apply_o(3)
'A'
>>> 'ABC'[-1]
'C'
>>> 'ABC'[3]
IndexError: string index out of range
Notes

As shown in the examples, behaves differently from standard method [i].

Parameters:

Name Type Description Default
i IndexO

circular index

required

Returns:

Type Description
Any

The element at circular index

Source code in src/ring_seq/RingSeq.py
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
def apply_o(self, i: IndexO) -> Any:
    """Gets the element at some circular index.

    Examples:
      >>> RingSeq('ABC').apply_o(-1)
      'C'
      >>> RingSeq('ABC').apply_o(3)
      'A'
      >>> 'ABC'[-1]
      'C'
      >>> 'ABC'[3] # doctest: +SKIP
      IndexError: string index out of range

    Notes:
      As shown in the examples, behaves differently from standard method `[i]`.

    Args:
      i: circular index

    Returns:
      The element at circular index
    """
    return apply_o(self.underlying, i)

index_from(i)

Normalizes a given circular index of a sequence.

Examples:

>>> RingSeq('ABC').index_from(-1)
2
>>> RingSeq('ABC').index_from(3)
0

Parameters:

Name Type Description Default
i IndexO

circular index

required

Returns:

Type Description
Index

A standard index

Raises:

Type Description
ArithmeticError

An error occurs if the sequence is empty.

Source code in src/ring_seq/RingSeq.py
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
def index_from(self, i: IndexO) -> Index:
    """Normalizes a given circular index of a sequence.

    Examples:
      >>> RingSeq('ABC').index_from(-1)
      2
      >>> RingSeq('ABC').index_from(3)
      0

    Args:
      i: circular index

    Returns:
      A standard index

    Raises:
      ArithmeticError: An error occurs if the sequence is empty.
    """
    return index_from(self.underlying, i)

index_o(x, start=0, end=maxsize)

Gets the index of the first occurrence of a sub-sequence.

Examples:

>>> RingSeq('ABC').index_o('B', 2, 7)
1
>>> 'ABC'.index('B', 2, 7)
ValueError: substring not found
>>> RingSeq('ABC').index_o('BCAB', 2, 8)
1
Notes

Given the definition of circular sequence, the searched slice can contain more elements than the sequence itself. As shown in the examples, behaves differently from standard method index(x[, i[, j]]).

Parameters:

Name Type Description Default
x Any

sub-sequence to be found, can be a str or a single element from a list or from a tuple

required
start IndexO

circular index where the search starts

0
end IndexO

circular index where the search ends

maxsize

Returns:

Type Description
Index

A standard index

Raises:

Type Description
Value error

An error occurs if the sub-sequence is invalid or not found.

Source code in src/ring_seq/RingSeq.py
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
def index_o(self, x: Any, start: IndexO = 0, end: IndexO = maxsize) -> Index:
    """Gets the index of the first occurrence of a sub-sequence.

    Examples:
      >>> RingSeq('ABC').index_o('B', 2, 7)
      1
      >>> 'ABC'.index('B', 2, 7) # doctest: +SKIP
      ValueError: substring not found
      >>> RingSeq('ABC').index_o('BCAB', 2, 8)
      1

    Notes:
      Given the definition of circular sequence, the searched slice can contain more elements than the sequence itself.
      As shown in the examples, behaves differently from standard method `index(x[, i[, j]])`.

    Args:
      x: sub-sequence to be found, can be a `str` or a single element from a `list` or from a `tuple`
      start: circular index where the search starts
      end: circular index where the search ends

    Returns:
      A standard index

    Raises:
      Value error: An error occurs if the sub-sequence is invalid or not found.
    """
    return index_o(self.underlying, x, start, end)

is_reflection_of(that)

Tests whether this circular sequence is a reflection of a given sequence.

Examples:

>>> RingSeq('ABC').is_reflection_of('ACB')
True
>>> RingSeq('ABC').is_reflection_of('ABC')
True

Parameters:

Name Type Description Default
that Seq

sequence to be compared

required

Returns:

Type Description
bool

True if equal to any reflection of that

Source code in src/ring_seq/RingSeq.py
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
def is_reflection_of(self, that: Seq) -> bool:
    """Tests whether this circular sequence is a reflection of a given sequence.

    Examples:
      >>> RingSeq('ABC').is_reflection_of('ACB')
      True
      >>> RingSeq('ABC').is_reflection_of('ABC')
      True

    Args:
      that: sequence to be compared

    Returns:
      True if equal to any reflection of that
    """
    return is_reflection_of(self.underlying, that)

is_reversion_of(that)

Tests whether this circular sequence is a reversion of a given sequence.

Examples:

>>> RingSeq('ABC').is_reversion_of('CBA')
True
>>> RingSeq('ABC').is_reversion_of('ABC')
True

Parameters:

Name Type Description Default
that Seq

sequence to be compared

required

Returns:

Type Description
bool

True if equal to any reversion of that

Source code in src/ring_seq/RingSeq.py
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
def is_reversion_of(self, that: Seq) -> bool:
    """Tests whether this circular sequence is a reversion of a given sequence.

    Examples:
      >>> RingSeq('ABC').is_reversion_of('CBA')
      True
      >>> RingSeq('ABC').is_reversion_of('ABC')
      True

    Args:
      that: sequence to be compared

    Returns:
      True if equal to any reversion of that
    """
    return is_reversion_of(self.underlying, that)

is_rotation_of(that)

Tests whether this circular sequence is a rotation of a given sequence.

Examples:

>>> RingSeq('ABC').is_rotation_of('BCA')
True
>>> RingSeq('ABC').is_rotation_of('ABC')
True

Parameters:

Name Type Description Default
that Seq

sequence to be compared

required

Returns:

Type Description
bool

True if equal to any rotation of that

Source code in src/ring_seq/RingSeq.py
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
def is_rotation_of(self, that: Seq) -> bool:
    """Tests whether this circular sequence is a rotation of a given sequence.

    Examples:
      >>> RingSeq('ABC').is_rotation_of('BCA')
      True
      >>> RingSeq('ABC').is_rotation_of('ABC')
      True

    Args:
      that: sequence to be compared

    Returns:
      True if equal to any rotation of that
    """
    return is_rotation_of(self.underlying, that)

is_rotation_or_reflection_of(that)

Tests whether this circular sequence is a rotation and/or reflection of a given sequence.

Examples:

>>> RingSeq('ABC').is_rotation_or_reflection_of('BAC')
True
>>> RingSeq('ABC').is_rotation_or_reflection_of('ABC')
True

Parameters:

Name Type Description Default
that Seq

sequence to be compared

required

Returns:

Type Description
bool

True if equal to any combination of rotation and reflection of that

Source code in src/ring_seq/RingSeq.py
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
def is_rotation_or_reflection_of(self, that: Seq) -> bool:
    """Tests whether this circular sequence is a rotation and/or reflection of a given sequence.

    Examples:
      >>> RingSeq('ABC').is_rotation_or_reflection_of('BAC')
      True
      >>> RingSeq('ABC').is_rotation_or_reflection_of('ABC')
      True

    Args:
      that: sequence to be compared

    Returns:
      True if equal to any combination of rotation and reflection of that
    """
    return is_rotation_or_reflection_of(self.underlying, that)

reflect_at(i=0)

Reflects the sequence to start at some circular index.

Examples:

>>> RingSeq('ABC').reflect_at()
'ACB'
>>> RingSeq('ABC').reflect_at(1)
'BAC'
Notes

reflect_at(-1) is equivalent to reversed.

Parameters:

Name Type Description Default
i IndexO

circular index where the reflected sequence starts

0

Returns:

Type Description
Seq

The reflected sequence

Source code in src/ring_seq/RingSeq.py
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
def reflect_at(self, i: IndexO = 0) -> Seq:
    """Reflects the sequence to start at some circular index.

    Examples:
      >>> RingSeq('ABC').reflect_at()
      'ACB'
      >>> RingSeq('ABC').reflect_at(1)
      'BAC'

    Notes:
      `reflect_at(-1)` is equivalent to `reversed`.

    Args:
      i: circular index where the reflected sequence starts

    Returns:
      The reflected sequence
    """
    return reflect_at(self.underlying, i)

reflections()

Computes all the reflections of this circular sequence

Examples:

>>> list(RingSeq('ABC').reflections())
['ABC', 'ACB']
>>> list(RingSeq('').reflections())
[]

Returns:

Type Description
Iterator[Seq]

The sequence and its reflection

Source code in src/ring_seq/RingSeq.py
215
216
217
218
219
220
221
222
223
224
225
226
227
def reflections(self) -> Iterator[Seq]:
    """Computes all the reflections of this circular sequence

    Examples:
      >>> list(RingSeq('ABC').reflections())
      ['ABC', 'ACB']
      >>> list(RingSeq('').reflections())
      []

    Returns:
      The sequence and its reflection
    """
    return reflections(self.underlying)

reversions()

Computes all the reversions of this circular sequence

Examples:

>>> list(RingSeq('ABC').reversions())
['ABC', 'CBA']
>>> list(RingSeq('').reversions())
[]

Returns:

Type Description
Iterator[Seq]

The sequence and its reversion

Source code in src/ring_seq/RingSeq.py
229
230
231
232
233
234
235
236
237
238
239
240
241
def reversions(self) -> Iterator[Seq]:
    """Computes all the reversions of this circular sequence

    Examples:
      >>> list(RingSeq('ABC').reversions())
      ['ABC', 'CBA']
      >>> list(RingSeq('').reversions())
      []

    Returns:
      The sequence and its reversion
    """
    return reversions(self.underlying)

rotate_left(step)

Rotates the sequence to the left by some steps.

Examples:

>>> RingSeq('ABC').rotate_left(1)
'BCA'

Parameters:

Name Type Description Default
step int

number of rotation steps to the left

required

Returns:

Type Description
Seq

The rotated sequence

Source code in src/ring_seq/RingSeq.py
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
def rotate_left(self, step: int) -> Seq:
    """Rotates the sequence to the left by some steps.

    Examples:
      >>> RingSeq('ABC').rotate_left(1)
      'BCA'

    Args:
      step: number of rotation steps to the left

    Returns:
      The rotated sequence
    """
    return rotate_left(self.underlying, step)

rotate_right(step)

Rotates the sequence to the right by some steps.

Examples:

>>> RingSeq('ABC').rotate_right(1)
'CAB'

Parameters:

Name Type Description Default
step int

number of rotation steps to the right

required

Returns:

Type Description
Seq

The rotated sequence

Source code in src/ring_seq/RingSeq.py
75
76
77
78
79
80
81
82
83
84
85
86
87
88
def rotate_right(self, step: int) -> Seq:
    """Rotates the sequence to the right by some steps.

    Examples:
      >>> RingSeq('ABC').rotate_right(1)
      'CAB'

    Args:
      step: number of rotation steps to the right

    Returns:
      The rotated sequence
    """
    return rotate_right(self.underlying, step)

rotational_symmetry()

Computes the order of rotational symmetry possessed by this circular sequence.

Examples:

>>> RingSeq('-|--|--|--|-').rotational_symmetry()
4
>>> RingSeq('-|+-|+-|+-|+').rotational_symmetry()
4

Returns:

Type Description
int

The rotational symmetry order, that is the number >= 1 of rotations

int

in which a circular sequence looks exactly the same

Source code in src/ring_seq/RingSeq.py
325
326
327
328
329
330
331
332
333
334
335
336
337
338
def rotational_symmetry(self) -> int:
    """Computes the order of rotational symmetry possessed by this circular sequence.

    Examples:
      >>> RingSeq('-|--|--|--|-').rotational_symmetry()
      4
      >>> RingSeq('-|+-|+-|+-|+').rotational_symmetry()
      4

    Returns:
      The rotational symmetry order, that is the number >= 1 of rotations
      in which a circular sequence looks exactly the same
    """
    return rotational_symmetry(self.underlying)

rotations()

Computes all the rotations of this circular sequence

Examples:

>>> list(RingSeq('ABC').rotations())
['ABC', 'BCA', 'CAB']
>>> list(RingSeq('').rotations())
[]

Returns:

Type Description
Iterator[Seq]

The sequence and its rotations, 1 step at a time to the left

Source code in src/ring_seq/RingSeq.py
173
174
175
176
177
178
179
180
181
182
183
184
185
def rotations(self) -> Iterator[Seq]:
    """Computes all the rotations of this circular sequence

    Examples:
      >>> list(RingSeq('ABC').rotations())
      ['ABC', 'BCA', 'CAB']
      >>> list(RingSeq('').rotations())
      []

    Returns:
      The sequence and its rotations, 1 step at a time to the left
    """
    return rotations(self.underlying)

rotations_and_reflections()

Computes all the rotations and reflections of this circular sequence

Examples:

>>> list(RingSeq('ABC').rotations_and_reflections())
['ABC', 'BCA', 'CAB', 'ACB', 'CBA', 'BAC']
>>> list(RingSeq('').rotations_and_reflections())
[]

Returns:

Type Description
Iterator[Seq]

The sequence and its rotations, and their reflections

Source code in src/ring_seq/RingSeq.py
243
244
245
246
247
248
249
250
251
252
253
254
255
def rotations_and_reflections(self) -> Iterator[Seq]:
    """Computes all the rotations and reflections of this circular sequence

    Examples:
      >>> list(RingSeq('ABC').rotations_and_reflections())
      ['ABC', 'BCA', 'CAB', 'ACB', 'CBA', 'BAC']
      >>> list(RingSeq('').rotations_and_reflections())
      []

    Returns:
      The sequence and its rotations, and their reflections
    """
    return rotations_and_reflections(self.underlying)

slice_o(start, end, step=1)

Selects an interval of elements.

Examples:

>>> RingSeq('ABC').slice_o(-1, 5)
'CABCAB'
>>> 'ABC'[-1:5]
'C'
>>> RingSeq('ABC').slice_o(-1, 5, 2)
'CBA'
>>> 'ABC'[-1:5:2]
'C'
Notes

Given the definition of circular sequence, a slice can contain more elements than the sequence itself. As shown in the examples, behaves differently from standard methods [i:j] and [i:j:k].

Parameters:

Name Type Description Default
start IndexO

circular index where the slice starts

required
end IndexO

circular index where the slice ends

required
step int

number of steps for filtering

1

Returns:

Type Description
Seq

The sliced sequence, with only the first element every each step

Raises:

Type Description
ValueError

An error occurs if slice step is zero.

Source code in src/ring_seq/RingSeq.py
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
def slice_o(self, start: IndexO, end: IndexO, step: int = 1) -> Seq:
    """Selects an interval of elements.

    Examples:
      >>> RingSeq('ABC').slice_o(-1, 5)
      'CABCAB'
      >>> 'ABC'[-1:5]
      'C'
      >>> RingSeq('ABC').slice_o(-1, 5, 2)
      'CBA'
      >>> 'ABC'[-1:5:2]
      'C'

    Notes:
      Given the definition of circular sequence, a slice can contain more elements than the sequence itself.
      As shown in the examples, behaves differently from standard methods `[i:j]` and `[i:j:k]`.

    Args:
      start: circular index where the slice starts
      end: circular index where the slice ends
      step: number of steps for filtering

    Returns:
      The sliced sequence, with only the first element every each step

    Raises:
      ValueError: An error occurs if slice step is zero.
    """
    return slice_o(self.underlying, start, end, step)

start_at(i)

Rotates the sequence to start at some circular index.

Examples:

>>> RingSeq('ABC').start_at(1)
'BCA'
Notes

Is equivalent to rotate_left.

Parameters:

Name Type Description Default
i IndexO

circular index where the sequence starts

required

Returns:

Type Description
Seq

The rotated sequence

Source code in src/ring_seq/RingSeq.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
def start_at(self, i: IndexO) -> Seq:
    """Rotates the sequence to start at some circular index.

    Examples:
      >>> RingSeq('ABC').start_at(1)
      'BCA'

    Notes:
      Is equivalent to `rotate_left`.

    Args:
      i: circular index where the sequence starts

    Returns:
      The rotated sequence
    """
    return start_at(self.underlying, i)

symmetry()

Computes the order of reflectional (mirror) symmetry possessed by this circular sequence.

Examples:

>>> RingSeq('-|--|--|--|-').symmetry()
4
>>> RingSeq('-|+-|+-|+-|+').symmetry()
0
Notes

Reflectional symmetry is always lower or equal than rotational symmetry.

Returns:

Type Description
int

The reflectional (mirror) symmetry order, that is the number >= 0 of reflections

int

in which a circular sequence looks exactly the same

Source code in src/ring_seq/RingSeq.py
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
def symmetry(self) -> int:
    """Computes the order of reflectional (mirror) symmetry possessed by this circular sequence.

    Examples:
      >>> RingSeq('-|--|--|--|-').symmetry()
      4
      >>> RingSeq('-|+-|+-|+-|+').symmetry()
      0

    Notes:
      Reflectional symmetry is always lower or equal than rotational symmetry.

    Returns:
      The reflectional (mirror) symmetry order, that is the number >= 0 of reflections
      in which a circular sequence looks exactly the same
    """
    return symmetry(self.underlying)

symmetry_indices()

Finds the indices of each element of this circular sequence close to an axis of reflectional symmetry.

Examples:

>>> RingSeq('-|--|--|--|-').symmetry_indices()
[1, 4, 7, 10]
>>> RingSeq('-|+-|+-|+-|+').symmetry_indices()
[]

Returns:

Type Description
list[Index]

The indices of each element close to an axis of reflectional symmetry,

list[Index]

that is a line of symmetry that splits the sequence in two identical halves

Source code in src/ring_seq/RingSeq.py
340
341
342
343
344
345
346
347
348
349
350
351
352
353
def symmetry_indices(self) -> list[Index]:
    """Finds the indices of each element of this circular sequence close to an axis of reflectional symmetry.

    Examples:
      >>> RingSeq('-|--|--|--|-').symmetry_indices()
      [1, 4, 7, 10]
      >>> RingSeq('-|+-|+-|+-|+').symmetry_indices()
      []

    Returns:
      The indices of each element close to an axis of reflectional symmetry,
      that is a line of symmetry that splits the sequence in two identical halves
    """
    return symmetry_indices(self.underlying)